Metric adjusted skew information.
نویسنده
چکیده
We extend the concept of Wigner-Yanase-Dyson skew information to something we call "metric adjusted skew information" (of a state with respect to a conserved observable). This "skew information" is intended to be a non-negative quantity bounded by the variance (of an observable in a state) that vanishes for observables commuting with the state. We show that the skew information is a convex function on the manifold of states. It also satisfies other requirements, proposed by Wigner and Yanase, for an effective measure-of-information content of a state relative to a conserved observable. We establish a connection between the geometrical formulation of quantum statistics as proposed by Chentsov and Morozova and measures of quantum information as introduced by Wigner and Yanase and extended in this article. We show that the set of normalized Morozova-Chentsov functions describing the possible quantum statistics is a Bauer simplex and determine its extreme points. We determine a particularly simple skew information, the "lambda-skew information," parametrized by a lambda in (0, 1], and show that the convex cone this family generates coincides with the set of all metric adjusted skew informations.
منابع مشابه
Uncertainty Relations for Generalized Metric Adjusted Skew Information and Generalized Metric Adjusted Correlation Measure
Correspondence: [email protected] Graduate School of Science and Engineering, Yamaguchi University, 755-8611 Une, Japan Full list of author information is available at the end of the article Abstract In this paper, we give a Heisenberg type or a Schrödinger-type uncertainty relation for generalized metric adjusted skew information or generalized metric adjusted correlation measure. These...
متن کاملSchrödinger uncertainty relation, Wigner-Yanase-Dyson skew information and metric adjusted correlation measure
In this paper, we give Schrödinger-type uncertainty relation using the WignerYanase-Dyson skew information. In addition, we give Schrödinger-type uncertainty relation by use of a two-parameter extended correlation measure. We finally show the further generalization of Schrödinger-type uncertainty relation by use of the metric adjusted correlation measure. These results generalize our previous r...
متن کاملMetric adjusted skew information, Metric adjusted correlation measure and Uncertainty relations
Inspired by the recent results in [4] and the concept of metric adjusted skew information introduced by Hansen in [6], we here give a further generalization for Schrödinger-type uncertainty relation applying metric adjusted correlation measure introduced in [6]. We firstly give some notations according to those in [4]. Let Mn(C) and Mn,sa(C) be the set of all n × n complex matrices and all n × ...
متن کاملOn the roots and minimum rank distance of skew cyclic codes
Skew cyclic codes play the same role as cyclic codes in the theory of errorcorrecting codes for the rank metric. In this paper, we give descriptions of these codes by idempotent generators, root spaces and cyclotomic spaces. We prove that the lattice of skew cyclic codes is anti-isomorphic to the lattice of root spaces and extend the rank-BCH bound on their minimum rank distance to rank-metric ...
متن کاملOn the Holonomy of Connections with Skew-symmetric Torsion
We investigate the holonomy group of a linear metric connection with skew-symmetric torsion. In case of the euclidian space and a constant torsion form this group is always semisimple. It does not preserve any non-degenerated 2-form or any spinor. Suitable integral formulas allow us to prove similar properties in case of a compact Riemannian manifold equipped with a metric connection of skew-sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 29 شماره
صفحات -
تاریخ انتشار 2008